Computer Graphics

9 - Orientation \& Rotation

Yoonsang Lee
Hanyang University

Spring 2023

Outline

- Basic Concepts
- Orientation vs. Rotation
- Degrees of Freedom
- Euler's Rotation Theorem
- 3D Orientation \& Rotation Representations
- Euler Angles
- Rotation Vector (Axis-Angle)
- Rotation Matrix
- Unit Quaternion
- Which Representation to Use?
- Consideration from Several Perspectives
- Interpolation of 3D Orientation / Rotations
- Pros \& Cons of Each Representation

Basic Concepts

State vs. Movement

- (position : translation)

State vs. Movement

- (position : translation)
- (orientation : rotation)
- \rightarrow (state : movement)

Orientation vs. Rotation (and Position vs. Translation)

- Orientation \& Position - state
- Position: The state of being located.
- Given a coordinate system, the position of an object can be represented as a translation from a reference position.
- Orientation: The state of being oriented. (angular position)
- Given a coordinate system, the orientation of an object can be represented as a rotation from a reference orientation.
- Rotation \& Translation - movement
- Translation: Linear movement (difference btwn. positions)
- Rotation: Angular movement (difference btwn. orientations)
- This relationship is analogous to point vs. vector.
- point: position
- vector: difference between two points

Similarity in Operations

- Point \& vector

$$
\begin{aligned}
& -(\text { point })+(\text { point }) \rightarrow(\text { UNDEFINED }) \\
& -(\text { vector }) \pm(\text { vector }) \rightarrow(\text { vector }) \\
& -(\text { point }) \pm(\text { vector }) \rightarrow(\text { point }) \\
& -(\text { point })-(\text { point }) \rightarrow(\text { vector })
\end{aligned}
$$

- Orientation \& rotation
- (orientation) (+) (orientation) \rightarrow (UNDEFINED)
- (rotation) (\pm) (rotation) \rightarrow (rotation)
- (orientation) (\pm) (rotation) \rightarrow (orientation)
$-($ orientation $)(-)$ (orientation) \rightarrow (rotation)

Degrees of Freedom (DOF)

- The number of independent parameters that define a unique configuration

Translation along one direction
: 1 DOF

Rotation about an axis
: 1 DOF

Degrees of Freedom (DOF)

Translation on a plane
: 2 DOFs

Translation in 3D space
: 3 DOFs

Rotation about two axes
: 2 DOFs

Rotation in 3D space
: 3 DOFs

Degrees of Freedom (DOF)

Any rigid motion in 3D
space
: 6 DOFs

Euler's Rotation Theorem

- Theorem. When a sphere is moved around its centre it is always possible to find a diameter whose direction in the displaced position is the same as in the initial position.
- Leonhard Euler (1707-1783)
- \rightarrow In 3D space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point.

Euler's Rotation Theorem

- \rightarrow For any 3D rotation (any movement with one point fixed), we can always find a fixed axis of rotation and an angle about the axis.

3D Orientation \& Rotation Representations

Describing 3D Rotation \& Orientation

- Describing 3D rotation \& orientation is not as intuitive as the 2D case.
- Several ways to describe 3D rotation and orientation
- Euler angles
- Rotation vector (Axis-angle)
- Rotation matrices
- Unit quaternions

Euler Angles

- Express any arbitrary 3D rotation using three rotation angles about three principle axes.
- Possible 12 combinations
- XYZ, XYX, XZY, XZX
- YZX, YZY, YXZ, YXY
- ZXY, ZXZ, ZYX, ZYZ
- (Combination is possible as long as the same axis does not appear consecutively.)

Example: ZXZ Euler Angles

- 1. Rotate about Z-axis by α
https://commons.wikimedia.org/w iki/File:Euler2a.gif
- 2. Rotate about X-axis of the new frame by β
- 3. Rotate about Z-axis of the new frame by γ

$$
\begin{aligned}
& \mathbf{R}=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right]\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \mathbf{R}=\begin{array}{c}
\mathbf{R}_{\mathbf{z}}(\alpha)
\end{array} \mathbf{R}_{\mathrm{x}}(\beta) \quad \mathbf{R}_{\mathbf{z}}(\gamma)
\end{aligned}
$$

Example: Yaw-Pitch-Roll Convention (ZYX Euler Angles)

- Common for describing the orientation of aircrafts
- 1. Rotate about Z-axis by yaw angle
- 2. Rotate about Y-axis of the new frame by pitch angle
- 3. Rotate about X-axis of the new frame by roll angle

$$
R=R_{z}(\text { yaw }) R_{y}(\text { pitch }) R_{x}(\text { roll })
$$

Recall: 3D Rotation Matrix about Principle Axes

Rotation about x axis:

$$
\mathbf{R}_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

Rotation about y axis:

$\mathbf{R}_{y, \theta}=\left[\begin{array}{ccc}\cos \theta & 0 \square \sin \theta \\ 0 & 1 & 0 \\ \square \sin \theta & 0 & \cos \theta\end{array}\right]$

Rotation about \mathbf{z} axis:
$\mathbf{R}_{z, \theta}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

View looking down -x axis:

View looking down -y axis:

* This slide is from the slides of Prof. Kayvon Fatahalian and Prof. Keenan Crane (CMU): http://15462.courses.cs.cmu.edu/fall2015/

Gimbal Lock

- Euler angles temporarily lose a DOF when the two axes are aligned.

Normal configuration:
The object can rotate freely.

Gimbal lock configuration:
The object can not rotate in one direction.

[Demo] Euler Angles

https://compsci290-s2016.github.io/CoursePage/Materials/EulerAnglesViz/index.html

- Try changing yaw, pitch, roll angles.
- Try making gimbal lock by aligning two of three rotation axes.
- ex) setting pitch to 90 degreess

Quiz 1

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Rotation Vector (Axis-Angle)

$\hat{\mathbf{v}}$: rotation axis (unit vector)
θ : scalar angle

- Rotation vector: $\mathbf{v}=\theta \hat{\mathbf{v}}=(x, y, z)$
- Axis-Angle: $\quad(\theta, \widehat{\mathbf{v}})$

Rotation Vector (Axis-Angle)

- Rotation vector is also known as exponential coordinates for rotation.
- If you are curious about why it was called that way, please refer:
- Section 3.2.3 of "Modern Robotics": http://hades.mech.northwestern.edu/images/2/25/MRv2.pdf

Rotation Matrix

$$
\mathbf{R}=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- A rotation matrix defines
- Orientation of new rotated frame or,
- Rotation from the world frame to be that rotated frame

Rotation Matrix

- A square matrix \mathbf{R} is a rotation matrix if and only if

1. $\mathbf{R R}^{T}=\mathbf{R}^{T} \mathbf{R}=\mathbf{I}$ \&\& 2. $\operatorname{det}(\mathbf{R})=1$

- A rotation matrix is an orthogonal matrix with determinant 1.
- Sometimes it is called special orthogonal matrix
- A set of rotation matrices of size 3 forms a special orthogonal group in $3 D, \mathbf{S O}(3)$

Geometric Properties of Rotation Matrix

- \mathbf{R}^{T} is an inverse rotation of \mathbf{R}.
- Because, $\mathbf{R R}^{T}=\mathbf{I} \Longleftrightarrow \mathbf{R}^{-1}=\mathbf{R}^{T}$

- $\mathbf{R}_{1} \mathbf{R}_{2}$ is a rotation matrix as well (composite rotation).
- proof)

$$
\begin{gathered}
\left(\mathbf{R}_{1} \mathbf{R}_{2}\right)^{T}\left(\mathbf{R}_{1} \mathbf{R}_{2}\right)=\mathbf{R}_{2}^{T} \mathbf{R}_{1}^{T} \mathbf{R}_{1} \mathbf{R}_{2}=\mathbf{R}_{2}^{T} \mathbf{R}_{2}=\mathbf{I} \\
\text { and } \operatorname{det}\left(\mathbf{R}_{1} \mathbf{R}_{2}\right)=\operatorname{det}\left(\mathbf{R}_{1}\right) \cdot \operatorname{det}\left(\mathbf{R}_{2}\right)=1
\end{gathered}
$$

- The length of vector \mathbf{v} is not changed after applying a rotation matrix \mathbf{R}.

$$
\text { - proof) }\|\mathbf{R v}\|^{2}=(\mathbf{R v})^{T}(\mathbf{R v})=\mathbf{v}^{T} \mathbf{R}^{T} \mathbf{R v}=\mathbf{v}^{T} \mathbf{v}=\|\mathbf{v}\|^{2}
$$

Quaternions

- Complex numbers can be used to represent 2D rotations.
- $z=x+y i$, where $i^{2}=-1$
$-z=x+y i=r \cos \varphi+i r \sin \varphi$

- Basic idea: Quaternion is its extension to 3D space.
- $q=w+x i+y j+z k$
-, where $i^{2}=j^{2}=k^{2}=i j k=-1$

$$
\begin{aligned}
& i j=k, \quad j k=i, \quad k i=j \\
& j i=-k, \quad k j=-i, \quad i k=-j
\end{aligned}
$$

Quaternions

- $q=w+x i+y j+z k$
$-w$ is called a real part (or scalar part).
$-x i+y j+z k$ is called an imaginary part (or vector part).
- Notation:

$$
\begin{aligned}
q & =w+x i+y j+z k \\
& =(w, x, y, z) \\
& =(w, \mathbf{v})
\end{aligned}
$$

Unit Quaternions

- Unit quaternions represent 3D rotations:
$-q=w+i x+j y+k z$,
,- where $w^{2}+x^{2}+y^{2}+z^{2}=1$
- Just like $z=x+y i$, where $x^{2}+y^{2}=1$ represents 2D rotation ($z=\cos \varphi+i \sin \varphi$).

- Rotation about axis $\widehat{\mathbf{u}}$ by angle θ :

$$
\mathbf{q}=\left(\cos \frac{\theta}{2}, \widehat{\mathbf{u}} \sin \frac{\theta}{2}\right)
$$

$$
\begin{aligned}
q= & w+x i+y j+z k \\
& =(w, x, y, z) \\
& =(w, \mathbf{v})
\end{aligned}
$$

Unit Quaternions

- A 3D position (x, y, z) is represented as a pure imaginary quaternion $(0, x, y, z)$.
- If $\mathbf{p}=(0, x, y, z)$ is rotated about axis $\widehat{\mathbf{u}}$ by angle θ, then the rotated position $\mathbf{p}^{\prime}=\left(0, x^{\prime}, y^{\prime}, z^{\prime}\right)$ is:

Unit Quaternions

Identity

$$
\mathbf{q}=(1,0,0,0)
$$

Multiplication

$$
\begin{aligned}
\mathbf{q}_{1} \mathbf{q}_{2} & =\left(w_{1}, \mathbf{v}_{1}\right)\left(w_{2}, \mathbf{v}_{2}\right) \\
& =\left(w_{1} w_{2}-\mathbf{v}_{1} \cdot \mathbf{v}_{2}, w_{1} \mathbf{v}_{2}+w_{2} \mathbf{v}_{1}+\mathbf{v}_{1} \times \mathbf{v}_{2}\right)
\end{aligned}
$$

Inverse

$$
\mathbf{q}^{-1}=(w,-x,-y,-z)
$$

(Conjugate)

- $\mathbf{q}_{1} \mathbf{q}_{2}$: rotate by \mathbf{q}_{1} then \mathbf{q}_{2} w.r.t. body frame or rotate by \mathbf{q}_{2} then \mathbf{q}_{1} w.r.t. world frame
- $\mathbf{p}^{\prime}=\mathbf{q}_{1} \mathbf{q}_{2} \mathbf{p}\left(\mathbf{q}_{1} \mathbf{q}_{2}\right)^{-1}=\mathbf{q}_{1}\left(\mathbf{q}_{2} \mathbf{p} \mathbf{q}_{2}^{-1}\right) \mathbf{q}_{1}{ }^{-1}$

Quiz 2

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Which Representation to Use?

Which Representation to Use?

- Let's consider each representation from the following four perspectives:
- 1) "Addition" of rotations
- 2) "Subtraction" of rotations
- 3) Interpolation of rotations
- 4) Continuity / correspondence in each representation

1) 'Addition" of Rotations

- \checkmark Rotation matrix, Unit quaternion:
- $\mathbf{R}_{1} \mathbf{R}_{2}, \mathbf{q}_{1} \mathbf{q}_{2}$
- Rotate by \mathbf{R}_{1} (or \mathbf{q}_{1}), then by \mathbf{R}_{2} (or \mathbf{q}_{2}) w.r.t. (current) body frame.
- (Element-wise addition does NOT even produce a rotation matrix or unit quaternion.)
- X Euler angles:
$-\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)+\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)=\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}, \gamma_{1}+\gamma_{2}\right)$?
- Does NOT mean rotate by $\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)$, then by $\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$.
- $\quad x$ Rotation vector:
$-\mathbf{v}_{1}+\mathrm{v}_{2}$?
- Does NOT mean rotate by \mathbf{v}_{1}, then by \mathbf{v}_{2}.

2) 'Subtraction' of Rotations

- \checkmark Rotation matrix, Unit quaternion:
- $\mathbf{R}_{1}{ }^{T} \mathbf{R}_{2}, \mathbf{q}_{1}{ }^{-1} \mathbf{q}_{2}$
- Rotational difference: A rotation matrix that rotate a frame $\mathbf{R}_{1}\left(\right.$ or $\left.\mathbf{q}_{1}\right)$ to be coincident with the frame \mathbf{R}_{2} (or \mathbf{q}_{2}) when applied w.r.t. the frame \mathbf{R}_{1} (or \mathbf{q}_{1})
- Because $\mathbf{R}_{1}\left(\mathbf{R}_{1}{ }^{T} \mathbf{R}_{2}\right)=\mathbf{R}_{2}$
- (Element-wise subtraction does NOT even produce a rotation matrix or unit quaternion.)
- X Euler angles:
$-\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)-\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\left(\alpha_{2}-\alpha_{1}, \beta_{2}-\beta_{1}, \gamma_{2}-\gamma_{1}\right) ?$
- Does NOT mean difference between rotation $\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$.
- X Rotation vector:
$-\mathbf{v}_{2}-\mathbf{v}_{1}$?
- Does NOT mean difference between rotation \mathbf{v}_{1} and \mathbf{v}_{2}.

3) Interpolation of Rotations

- Can we just linear interpolate each element of
- Euler angles
- Rotation vector
- Rotation matrix
- Unit quaternion
- ?
- $\rightarrow \mathrm{No}$!

Interpolating Each Element of Rotation Matrices / Unit Quaternions?

- Let's try to interpolate \mathbf{R}_{0} (identity) and \mathbf{R}_{1} (rotation by 90° about x -axis).

$$
\operatorname{lerp}\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], 0.5\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & -0.5 \\
0 & 0.5 & 0.5
\end{array}\right]
$$

is not a rotation matrix! does not make sense at all!

- Similarly, interpolating each number ($\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$) in unit quaternions does not make sense.

Interpolating Rotation Vectors?

- Let's say we have two rotation vectors $\mathbf{v}_{1} \& \mathbf{v}_{2}$ of the same length
- Linear interpolation of $\mathbf{v}_{1} \& \mathbf{v}_{2}$ produces even spacing

Interpolating Rotation Vectors?

- Let's say we have two rotation vectors $\mathbf{v}_{1} \& \mathbf{v}_{2}$ of the same length.
- Linear interpolation of $\mathbf{v}_{1} \& \mathbf{v}_{2}$ produces even spacing.
- But it's not evenly spaced in terms of orientation!

Interpolating Euler Angles?

- Interpolating two tuples of Euler angles does not provide correct result.
-+ angular velocity is not constant
-+ still suffer from gimbal lock: jerky movement occurs near gimbal lock configuration

Slerp

- The right answer: Slerp [Shoemake 1985]
- Spherical linear interpolation
- Linear interpolation of two orientations

Slerp with Rotation Matrices

- $\operatorname{slerp}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, t\right)=\mathbf{R}_{1}\left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)^{t}$
- Implication
$-\mathbf{R}_{1}{ }^{\mathrm{T}} \mathbf{R}_{2}$: difference between orientation \mathbf{R}_{1} and $\mathbf{R}_{2}\left(\mathbf{R}_{2}(-) \mathbf{R}_{1}\right)$
$-\mathbf{R}^{\mathrm{t}}$: scaling rotation (scaling rotation angle)
- $\mathbf{R}_{\mathrm{a}} \mathbf{R}_{\mathrm{b}}$: add rotation \mathbf{R}_{b} to orientation $\mathbf{R}_{\mathrm{a}}\left(\mathbf{R}_{\mathrm{a}}(+) \mathbf{R}_{\mathrm{b}}\right)$
- $\operatorname{slerp}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, t\right)=\mathbf{R}_{1}\left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)^{t}$

$$
=\mathbf{R}_{1} \exp \left(\mathrm{t} \cdot \log \left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right)
$$

$-\exp ():$ rotation vector to rotation matrix
$-\log ()$: rotation matrix to rotation vector

$\operatorname{Exp} \& \log$

- Exp (exponential): rotation vector to rotation matrix
- Given normalized rotation axis $\mathrm{u}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{v}}, \mathrm{u}_{\mathrm{z}}\right)$, rotation angle θ

$$
R=\left[\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{z}^{2}(1-\cos \theta)
\end{array}\right] \text { (Rodrigues' } \begin{aligned}
& \text { rotation formula) }
\end{aligned}
$$

- Log (logarithm): rotation matrix to rotation vector
- Given rotation matrix \mathbf{R}, compute axis \mathbf{v} and angle θ :

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\left(R_{11}+R_{22}+R_{33}-1\right) / 2\right) \\
v_{1} & =\left(R_{32}-R_{23}\right) /(2 \sin \theta) \\
v_{2} & =\left(R_{13}-R_{31}\right) /(2 \sin \theta) \\
v_{3} & =\left(R_{21}-R_{12}\right) /(2 \sin \theta)
\end{aligned}
$$

+ some algorithm to avoid singularity at $\theta=k \pi$, where k is an integer.
- No need to try to memorize these formulas!
- For detail, please refer Section 3.2.3 of "Modern Robotics": http://hades.mech.northwestern.edu/images/2/25/MR-v2.pdf

$\operatorname{Exp} \& \log$

- Practical note:
- For $\exp ()$ and $\log ()$, you can use the functions provided by libraries such as pyglm, scipy (python), and Eigen (c++).
- Today's lab uses pyglm for this.
- You can implement your own $\exp ()$ and $\log ()$ if you wish. Implementation is not too difficult.

Slerp with Quaternions

- Quaternion slerp:
$-\operatorname{slerp}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, t\right)=\mathbf{q}_{1}\left(\mathbf{q}_{1}^{-1} \mathbf{q}_{2}\right)^{t}$
- Geometric slerp (equivalent):
$-\operatorname{slerp}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, t\right)=\frac{\sin ((1-t) \varphi)}{\sin \varphi} \mathbf{q}_{1}+\frac{\sin (t \varphi)}{\sin \varphi} \mathbf{q}_{2}$
- φ : the angle subtended by the $\operatorname{arc}\left(\cos \varphi=\mathbf{q}_{1} \cdot \mathbf{q}_{2}\right)$
- No slerp for Euler angles or rotation vector representation!
- They need to be converted to rotation matrices or unit quaternions to be slerped.

Comparison of Interpolation Methods

- Start orientation (ZYX Euler angles): $\mathrm{Rz}(-90) \mathrm{Ry}(90) \mathrm{Rx}(0)$
- End orientation (ZYX Euler angles): Rz(0) Ry(0) Rx(90)

intergolatiun fectugen retation vestore

[Demo] Slerp

- Try changing "Start Rotation" \& "End Rotation"
- Try moving "Interpolate" slider

Quiz 3

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

3) Interpolation of Rotations: Summary

- \checkmark Rotation matrix, Unit quaternion:
$-\operatorname{slerp}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, t\right), \operatorname{slerp}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, t\right)$
- (Element-wise interpolation does NOT even produce a rotation matrix or unit quaternion.)
- X Euler angles:
$-\operatorname{lerp}\left(\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right),\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)\right)$?
- Does NOT mean linear interpolation between two rotations
- X Rotation vector:
$-\operatorname{lerp}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$?
- Does NOT mean linear interpolation between two rotations

4) Continuity / Correspondence

- X Euler angles, Rotation vector:
- Use 3 parameters to express 3 DOFs orientations / rotations.
- Due to this characteristic, they have the following problems:
- Discontinuity
- The representation of continuous orientations may have discontinuities.
- Many-to-one mapping
- One orientation can be mapped to many representations

4) Continuity / Correspondence

- \triangle Unit quaternion:
- Use 4 parameters
- Continuous representation
- Two-to-one mapping
- Any \mathbf{q} and $-\mathbf{q}$ always represent the same rotation.
- This property is called antipodal equivalence.
- \checkmark Rotation matrix:
- Use 9 parameters
- Continuous one-to-one mapping

Again: Which Representation to Use?

- General advice:
- Use rotation matrices or unit quaternions.
- More advanced advice:
- Don't stick to just one representation. Each has its pros and cons.
- To take advantage of a different representation, you can convert your rotational data to another representation and back to the original representation.

Pros \& Cons of Euler Angles

- $\boldsymbol{\nabla}$ Not provide accurate "addition", "subtraction", and interpolation operations
- $\boldsymbol{\nabla}$ Discontinuity / Many-to-one correspondence
- $\boldsymbol{\nabla}$ Gimbal lock
-

A Intuitive way for manipulating orientations in 3D tools
A Can be used to represent the state of a hardware implementation of a ball joints using three perpendicular hinge joints

Pros \& Cons of Rotation Vector

- $\boldsymbol{\nabla}$ Not provide accurate "addition", "subtraction", and interpolation operations
- $\boldsymbol{\nabla}$ Discontinuity / Many-to-one correspondence
- \triangle Good for visualizing a "rotation"
- It gives a direct sense of rotation axis and angle.
- Δ Most compact representation using 3 parameters
- Euler angles too, but it has gimbal lock issues.

Pros \& Cons of Rotation Matrix

- \quad Provides accurate "addition", "subtraction", and interpolation operations
- Δ Continuous one-to-one mapping (very nice)
- \quad Good for visualizing "orientation"
- You can easily visualize an orientation by drawing the frame with its $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes using the three columns of the rotation matrix.
- Δ Can be easily extended to a $4 x 4$ affine transformation matrix to handle rotation and translation in a uniform way
- $\boldsymbol{\nabla}$ Many (9) parameters (storage)
- ∇ Computationally slower and numerically less stable than unit quaternions (but not much)

Pros \& Cons of Unit Quaternion

- \quad Provides accurate "addition", "subtraction", and interpolation operations
- Δ Continuous representation
- Δ Only 4 parameters
- Δ Computationally faster and numerically more stable than rotation matrices
- $\boldsymbol{\nabla}$ Two-to-one mapping (antipodal equivalence)
- $\boldsymbol{\nabla}$ Less intuitive number system

Conversion between Representations

- There are well-established theories for conversion between
- Euler angles
- Rotation vector
- Rotation matrix
- Unit quaternion.
- You can use libraries such as pyglm, scipy (python) or Eigen (c++) for conversion between these representation.
- pyglm only provides some of these conversions.
- You can implement your own conversion code if you wish, referring to these theories (by gooling, etc).

Lab Session

- Now let's start the lab session.

